
NASA Contractor Report 201604

ICASE Report No. 96-56

ICASE
WORST CASE COMPLEXITY OF PARALLEL
TRIANGULAR MESH REFINEMENT BY LONGEST
EDGE BISECTION

Can Özturan

NASA Contract No. NAS1-19480
December 1996

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001 19970319 159

DISTRIBUTION STATEMENTX"

Approved for public release;
Distribution Unlimited

Worst Case Complexity of Parallel Triangular Mesh
Refinement by Longest Edge Bisection

Can Özturan*
Assistant Professor

Computer Engineering Department
Bogazici University

Istanbul, Turkey

Abstract

We present a logarithmic algorithm for performing parallel refinement of triangular
meshes by the widely used longest edge bisection procedure. We show that the
refinement propagation forms a data dependency which can be expressed as a forest of
directed trees. We solve a parallel Euler Tour problem on the trees to propagate the
refinement. After propagation, we apply refinement templates. Our algorithm improves
earlier reported results which had linear worst case complexity.

"This research was supported by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction
Recently, adaptive mesh refinement (AMR) techniques for the solution of partial differential
equations have gained importance due to their ability to concentrate computational as well
as storage resources to regions where they are most needed, i.e. regions where the error in
the computed solution is not within a prescribed tolerance. AMR methods are driven by
automatic estimation and control of discretization errors and therefore need procedures to
refine regions with high errors. Since the mesh needs to be refined selectively, specialized
data structures and algorithms must be devised to refine and maintain the nonuniform
mesh.

In this paper, we address the problem of parallelizing adaptive refinement of two-
dimensional triangular meshes. A variety of techniques have been proposed to refine such
meshes sequentially [2] [3] [10] [11]. The following three properties are highly desirable in a
refined mesh: (i) the resultant mesh should be conforming, i.e., the intersection of any two
triangles should be either a single vertex, or an edge joining two vertices or the empty set,
(ii) the mesh gradation should be smooth, i.e., the areas of neighboring triangles should
not differ drastically, and finally (Hi) the angles in the mesh should be neither too small
nor too large [1][5].

Rivara's refinement algorithm [10] which is based on bisecting the triangles by their
longest edge satisfies properties (i) and (ii). In relation to property (m), it is proved that
the smallest angle in the (succesively) refined mesh is bounded by at worst one-half the
smallest angle in the original mesh.

Parallelization of mesh refinement procedures based on longest edge bisection have
been considered in [4] [7] [14] [16]. The refinement procedures implemented by Jones and
Plassmann [7] use randomized graph coloring heuristics to resolve data structure update
conflicts. The data structures used in [4] and [14] do not necessitate the use of any
graph coloring heuristic to implement parallel mesh refinement. All these implementations,
however, have a worst case linear complexity due to possible propagation of refinement
to all other triangles in the mesh. A worst case example has been given by Jones and
Plassmann [7] and is shown in Figure 1.

FIG. 1. Example given by Jones and Plassmann showing linear worst case propagation of
refinement.

In this paper, we present a logarithmic data parallel algorithm to refine triangular
meshes by Rivara's longest edge bisection procedure. We first present the problem
statement and then describe the algorithm. We also present an example illustrating the
steps of our algorithm and suggest data structures for possible practical implementation.

2 Problem Specification
Let T(V, E, F) denote a two-dimensional triangular mesh with V representing the set of
vertices,

V = {(Xi,yi) : xi,yi € 3?},

E, the set of edges,
E = {(vi,Vj) : Vi,Vj € V},

and F, the set of triangular faces,

F = {(ej, e,-, ejfc) : e*, ej,ek € .E}.

We define the lengthfe) of an edge, e* G £, as its euclidean length and use the index i
to break the ties when multiple edges have same the euclidean length.

In this paper, we assume that the input data supplied by the user specifies V, E and
F. Some mesh generators may output the set of faces and express each face as a 3-tuple of
vertices. In the discussion and conclusion section, we suggest a possible way of converting
such a data set to the one assumed in this paper.

Rivara presents two algorithms for refining the mesh by longest edge bisection. These
are illustrated in Figure 2. In the first algorithm, a triangle marked for refinement (either
initially or as a result of satisfying the conformity requirement) is always divided into two
by bisecting it by the longest edge. In the second algorithm, the triangle is first bisected
by the longest edge into two and if the non-conformity still persists, one or both of the two
refined triangles are further subdivided to maintain conformity.

(a) (b)

FlG. 2. Illustration of Rivara's two algorithms to refine by longest edge bisection

Rivara's second algorithm is simpler and more practical. It also has the same angle
bound as the first one. Therefore, it is the choice of several implementations including that
of Jones and Plassman. In this paper, the parallelization technique we present in the next
section applies to this second algorithm. Given a triangle with one, two, or all of the edges
marked for refinement, Figure 3 shows the four possible templates that are used to refine
the triangle in the second algorithm.

3 Algorithm Description
Unlike the previous algorithms which apply the refinement templates and propagate
refinement simultaneously, our approach first propagates the edge-markings to satisfy
conformity and then applies the templates at the end. Application of the templates can be
parallelized easily once appropriate edges have been marked for refinement. The issue that
remains is how to parallelize the propagation step in an efficient way.

The following theorem constructs the directed data dependency graph of refinement
propagation by treating each mesh edge as a vertex and drawing a directed edge from one

FIG. 3. Rivara refinement templates

vertex to the other if the refinement of the former induces the refinement of the latter.
The theorem proves an important property of the graph constructed in this way.

THEOREM 3.1. Let Gr(Vr,Er) be a directed graph constructed from a triangular mesh
T(V,E,F) with the vertex set,

VT = {ej : ej € E and e* is the longest edge of at least one triangle in F},

and the directed edge set,

Er = {< Vi,Vj > : Vi,Vj £ VT and length(vi) < lengthfvj)};

then the graph Gr forms a forest of directed trees.
Proof. There are two observations. The lengths of mesh edges increase strictly as we

follow a directed path. Therefore, there can be no cyles in Gr and hence GT forms a directed
acyclic graph (DAG). Secondly, a vertex v\ E Vr can have at most one outward directed
edge. The only way a vertex could have more than one outward directed edge is if it was not
the longest edge of any triangle ; but these types of edges are not included in the definition
of Vr. Therefore, we have a DAG, with vertices having at most one outward edge. This
type of graph forms a forest of directed trees. D

Our algorithm which parallelizes the refinement process basically constructs Euler Tours
of directed trees and does a computation similar to computing the number of descendants
of a tree node by the pointer jumping technique [6, p. 118]. We assign a weight of 1 to
each edge < v,parent(v) >, v S Vr, in the Euler Tour if node v has been initially marked
for refinement. All the other edges in the Euler Tour get a weight of 0. We compute prefix
sums of these weights. Treating the root of the tree as a special case, we take the difference
between the prefix sums of < parent(v),v > and < v,parent(v) > to get the number of
marked descendants. If a node has positive number of marked descendants or the node itself
has been initially marked for refinement, that node (i.e. the corresponding mesh edge) will
be refined.

If the number of triangles is n, then the numbers of edges and nodes are also 0(n). Let
us assume a concurrent read, exclusive read model of PRAM. We will use 0(n) number of
processors. The following theorem establishes the complexity of the algorithm assuming
this model.

Algorithm ParallelRefine
begin

1. Construct forest of directed trees, GT

2. Construct Euler Tour of each tree in GT

3. Assign weights to each edge of GT-
4. Perform prefix summation of the weights on the edges from the beginning of each

linked list by pointer jumping.
5. Compute the number of marked descendants of each node.
6. Refine an edge corresponding to a tree node if it is initially marked or it

has positive number of marked descendants.
7. Apply the appropriate refinement template to each triangle,

end

FIG. 4. Steps of parallel refinement algorithm

THEOREM 3.2. Algorithm ParallelRef ine has logarithmic worst case complexity.
Proof. Step 1 of the algorithm takes 0(1) time since it involves assigning a processor

to each triangle and having it compare the lengths of its edges. The degree of each node
in graph GT is at most 4. Therefore, step 2 can be done in 0(1) as follows: The directed
edges in the graph GT act as backward edges, < v,parent(v) >, in the Euler Tour. The
backward edges and the forward edges, < parent{v),v >, can be assigned to one of the
four locations associated with a node using exclusive writes. To do this, note that we can
order the vertices of each triangle in such a way that we have a consistent (for example,
clockwise) traversal. If we let (zi,j/i), (a^.i/a) and (x3,y3) denote the vertices of a triangle,
the ordering can be done by arranging vertices in triangles such that the determinant
formula, {x2yz - x3y2) - (xlV3 - x3yi) + (sij/2 - x2yi) has a consistent sign. Given an edge
d = (uicpUiJ, we can have at most two triangles sharing this edge. From the consistent
ordering, we can then state that the difference in the indices, will be positive for one triangle
(e.g. to -*i > 0) and negative for the other triangle (e.g. h -*0 < 0). Furthermore, we can
classify edges within a single triangle according to the order they appear (taking the longest
edge as a frame of reference). In this way, we can get a unique location in the range 0,..., 3
for each edge and hence make the assignment by exclusive writes. Weight assignment in
step 3 takes 0(1). The prefix summation by pointer jumping at step 4 takes O(logn) time.
Step 5 takes 0(1) time to compute the differences in prefix summation. Finally steps 6 and
7 take 0(1) time since it involves each processor assigned to a triangle check locally for the
appropriate template to use and to apply the refinement using this template. The overall
parallel refinement algorithm has logarithmic worst case complexity. D

The next section gives an example mesh and shows examples of linearized tree
constructions on this mesh.

4 Example and Tree Representations
We illustrate the steps of our parallel refinement algorithm on the example mesh given in
Figure 4. Figure 4(a) shows the original mesh with labels on the edges which act as the
longest edge of at least one triangle. It also shows the shaded face /i as being initially
marked for refinement. Since edge 3 is the longest edge of face fx. it has a weight of 1 and
is drawn with a dark circle to indicate this weight. The rest of the labelled edges are not

part of any face which have been marked for refinement. Therefore, they all have weight 0
and are drawn with a white circle to indicate this weight. Additionally, Figure 4(a) shows
the forest of directed trees that represent the dependency of refinement propagation for the
mesh. As is illustrated in Figure 4(b), the refinement of edge 3 will propagate to edges 4,
5 and 6. Once these four edges are marked for refinement, application of the refinement
templates given in Figure 2 will lead to the final refined and conforming mesh given in
Figure 4(c).

rv °~

\. \ /

(c)

FIG. 5. An example showing the construction of directed trees (a), the propagation of refinement

(b) and the final refined mesh (c)

Given the example mesh and the corresponding forest of directed trees, we illustrate the
Euler-Tour representation of one of the trees (the one containing the nodes 3, 4, 5 and 6)
in Figure 6(a). Euler Tour representation replaces each edge of the tree with two directed
edges. In distributed memory implementations, this may lead to some complications due
to variable number of links pointing to or from a tree node. A more practical preorder
tree traversal representation involve replacement of each tree node, u€Vr, with two nodes,
u0 and u\. This representation has been used by [15] and recently by [8]. Figure 6(b)
illustrates the example tree in this representation.

I

^ (>0 6i -^

7o ^" 7l

4

ü ->l

■ t
o 4>

-H-[

(a)

FIG. 6. Linearized representation for one of the trees in the example: Euler Tour representation
(a) and another more practical representation (h)

Given the representation in Figure 6(b), we assign the following weights; w{u0) = 1 if

5

u has been marked for refinement and w{uo) = 0 if u has been not marked for refinement.
In addition, we assign w{ii[) = 0. Let pw{ui), i = 0,1, denote the prefix-type computation
defined on this linked list, i.e. the summation of weights of nodes from the beginning of
the list until and including the node U{.

TABLE 1

node Ui 6o 70 7i 5o 4o 3o 3i 4i 5i 8o 8i 6i

w(ui) 0 0 0 0 0 1 0 0 0 0 0 0

pw{ui) 1 1 1 1 1 1 0 0 0 0 0 0

pw(uo) —pw{u\) 1 0 1 1 1 0

Table 1 shows the initial weight assignments and the values of pw(ui). If pw(uo) -
pw(ui) > 0, then we know that the node u has been either initially marked for refinement
or it should be marked because of propagation of refinement.

5 Discussion sind Conclusion
In this paper, we have presented a logarithmic algorithm for adaptive mesh refinement
by the longest edge bisection. The main advantage of the proposed algorithm is not its
significantly lower worst case complexity, but rather its simplicity and its data parallel
nature. The algorithm uses parallel prefix-type computation on linked list of mesh entities.
Hence, it is a good candidate for implementation by a data parallel language like High
Performance Fortran. The previous methods which have been proposed will be difficult to
implement with a data parallel language.

We have assumed our input to be in the form of faces pointing to edges and edges
pointing to vertices. Whereas mesh generators such as the one described in [13] generate
this type of input by default, there are also mesh generators that output meshes by giving
a set of vertices and a set of faces with each face pointing to three vertices. One possible
conversion procedure for this type input is this: We can identify edges with the indices of
its two vertices which make it up. We can then have each face generate these two-tuples
(vertex-vertex pair in ascending order) for each of its edges. These two tuples can then be
sorted to get the face-to-edge relationship.

In this paper, we have developed our algorithm for two-dimensional triangular meshes.
One immediate question that pops up is this: Can we employ the same strategy for adaptive
refinement of three-dimensional tetrahedral meshes ? Various methods have been proposed
for tetrahedron refinement [3][9] including one based on longest edge bisection [12]. In two
dimensions, an edge can be shared by at most two faces. In three dimensions, there can be
arbitrary number of faces which can share an edge. This introduces some complications.
These problems will be the target of future investigations.

References

[1] I. Babuska and K. Aziz, On the angle condition in the finite element method, SIAM J. Numer.
Analysis, 13 (1976), pp. 214-226.

[2] R. Bank, A. Sherman, and H. Weiser, Refinement algorithms and data structures for
regular local mesh refinement, in Scientific Computing, R. S. et al., ed., Amsterdam, 1983,
IMACS/North Holland Publishing Company, pp. 3-17.

[3] E. Bausch, An adaptive finite-element strategy for the three-dimensional time-dependent navier-
stokes equations, J. of Computational and Applied Mathematics, 36 (1991), pp. 3-28.

[4] J. G. Castanos, The dynamic adaptation of parallel mesh-based computation, Master's thesis,
Department of Computer Science Department, Brown University, May 1996.

[5] I. Fried, Condition of finite element matrices generated from non-uniform meshes, AIAA J.,
10 (1972), pp. 219-221.

[6] J. Jaja, An introduction to Parallel Algorithms, Addison Wesley, 1992.
[7] M. T. Jones and P. E. Plassmann, Parallel algorithms for adaptive mesh refinement, Tech. Rep.

MCS-P421-0494, Mathematics and Computer Science Division, Argonne National Laboratory,
Illinois, 1994. (to appear in SI AM J. on Scientific Computing).

[8] C. P. Kruskal, L. Rudolph, and M. Snir, Efficient parallel algorithms for graph problems,
Algorithmica, 5 (1990), pp. 43-64.

[9] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM J.
on Scientific Computing, 16 (1995), pp. 1269-1291.

[10] M.-C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, Int. J. Numer. Methods in Engineering, 20 (1984), pp. 745-756.

[11] , Mesh refinement processes based on the generalized bisection of simplices, SIAM J.
Numer. Analysis, 21 (1984), pp. 604-613.

[12] M.-C. Rivara and C. Levin, 3d refinement algorithm suitable for adaptive multigrid techniques,
Comm. in Applied Numer. Methods, 8 (1992), pp. 281-290.

[13] W. J. Schroeder and M. S. Shephard, A combined octree/Delaunay method for fully automatic
3d mesh generation, Int. J. of Numer. Methods in Engineering, 29 (1990), pp. 37-55.

[14] M. S. Shephard, J. E. Flaherty, H. L. DeCougny, C. Özturan, C. L. Bottasso, and M. Beall,
Parallel automated adaptive procedures for unstructured meshes, in Parallel Computing in CFD,
AGARD, Neuilly-Sur-Seine, 1995.

[15] B. K. Szymanski and A. Minczuk, A representation of a distribution power network graph,
Archiwum Elektrotechniki, 27 (1978), pp. 367-380.

[16] R. D. Williams, A dynamic solution-adaptive unstructured parallel solver, Tech. Rep. CCSF-
21-92, Supercomputing Facility, California Institute of Technology, California, 1992.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway Suite 1204 Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE
December 1996

3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE
WORST CASE COMPLEXITY OF PARALLEL TRIANGULAR
MESH REFINEMENT BY LONGEST EDGE BISECTION

6. AUTHOR(S)

Can Ozturan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 96-56

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201604
ICASE Report No. 96-56

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in the Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
We present a logarithmic algorithm for performing parallel refinement of triangular meshes by the widely used longest
edge bisection procedure. We show that the refinement propagation forms a data dependency which can be expressed
as a forest of directed trees. We solve a parallel Euier Tour problem on the trees to propagate the refinement. After
propagation, we apply refinement templates. Our algorithm improves earlier reported results which had linear worst
case complexity.

14. SUBJECT TERMS
parallel processing; adaptive mesh refinement

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

VISN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

OF ABSTRACT

15. NUMBER OF PAGES

9
16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

10

